通知 网站从因情语写改为晴雨,这个网站的模板也从calmlog_ex改为 whimurmur

一章四节 函数与极限 无穷小与无穷大

4252人浏览 / 0人评论 / | 作者:因情语写  | 分类: 高等数学  | 标签: 高等数学

作者:因情语写

链接:https://www.qingyu.blue/article/44

声明:请尊重原作者的劳动,如需转载请注明出处


    说明:该节主要讲了无穷小与无穷大的定义与性质

    无穷小

    定义1

    如果函数f(x)当x->x₀(或x->∞)时的极限为零,那么称函数f(x)当x->x₀(或x->∞)时的无穷小

    定理1

    在自变量的同一变化过程x->x₀(或x->∞)中,函数f(x具有极限A的充分必要条件是f(x)=A+ α ,其中 α 是无穷小

    无穷大

    定义2

    设函数f(x)在x₀的某一去心邻域内有定义(或|x|大于某一正数时有定义),如果对于任意给定的正数M(不论它多大),总存在正数 δ (或正数X),只要x适合不等式0<|x-x₀|<δ(或|x|>X),对应的函数值f(x)总满足不等式

                                             f(x) > M

    则称函数f(x)为当x->x₀(或x->∞)时的无穷大

    定理2

    在自变量的同一变化过程中,如果f(x)为无穷大,则1/f(x)为无穷小,反之,如果f(x)为无穷小,则1/f(x)为无穷大

    注意:无穷大一定无界,无界不一定是无穷大

 


亲爱的读者:有时间可以点赞评论一下

点赞(0) 打赏

全部评论

还没有评论!