通知 网站从因情语写改为晴雨,这个网站的模板也从calmlog_ex改为 whimurmur

四章一节 向量组的线性相关性 向量组及其线性组合

2892人浏览 / 0人评论 / | 作者:因情语写  | 分类: 线性代数  | 标签: 线性代数

作者:因情语写

链接:https://www.qingyu.blue/article/165

声明:请尊重原作者的劳动,如需转载请注明出处


    定义1 n个数a₁, a₂,...,aₙ组成的有序数组称为n维向量,记成[ a₁, a₂,...,aₙ]或[ a₁, a₂,...,aₙ]ᵀ,前者称为 n 维行向量,后者称为n 维列向量;第i 个数 aᵢ 称为第i 个分量

    定义2 给定向量组I:α₁,α₂,..., αₘ ,对于任何一组实数 k₁, k₂,...,kₘ,表达式k₁α₁ + k₂α₂ + ... + kₘαₘ 称为向量组I的一个线性组合, k₁, k₂,...,kₘ 称为该线性组合的系数;若对某向量β ,存在一组数 k₁, k₂,...,kₘ ,使 β =  k₁α₁ + k₂α₂ + ... + kₘαₘ,则称 β 能由向量组 I 线性表示.

    定理1 向量 β 能由向量组I:α₁,α₂,αₘ 线性表示
<=> 非齐次方程组 k₁α₁ + k₂α₂ + ... + kₘαₘ = β 有解
<=>r(α₁,α₂,..., αₘ ) = r(α₁,α₂,..., αₘ, β)

    定义3 设有两个向量组I:α₁,α₂,..., αₘ 和 II: β₁,β₂,..., βₗ,若II中每个向量都能由向量组I 线性表示,则称向量组II能由向量组I 线性表示;若向量组I 和向量组II 可相互线性表示,则称两向量组等价.

    定理2 向量组II : β₁,β₂,..., βₗ 能由向量组 I: α₁,α₂,..., αₘ 线性表示
    <=>r(α₁,α₂,..., αₘ ) = r(α₁,α₂,..., αₘ, β₁,β₂,..., βₗ)

    推论 向量组 I: α₁,α₂,..., αₘ 与向量组 II : β₁,β₂,..., βₗ 等价
    <=>r(α₁,α₂,..., αₘ ) = r(α₁,α₂,..., αₘ, β₁,β₂,..., βₗ) <=>r(β₁,β₂,..., βₗ)

    定理3 设向量组 II : β₁,β₂,..., βₗ 能由向量组 I: α₁,α₂,..., αₘ 线性表示,
    则 r(β₁,β₂,..., βₗ) <= r(α₁,α₂,..., αₘ )


自己写的文章声明标题示例:


点赞(0) 打赏

全部评论

还没有评论!